Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 24(6): 843-848, 2019 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-31173714

RESUMO

In this Backstory, Cell Stem Cell Senior Scientific Editor Jonathan Saxe presents a case study of two Cell Stem Cell papers published in 2018. Using the correspondences between authors, editors, and reviewers as tools, he provides broader insights and tips into navigating the journal's editorial consideration process.


Assuntos
Esôfago/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Organoides/fisiologia , Revisão por Pares , Correspondência como Assunto , Humanos , Organogênese , Publicações
2.
EMBO J ; 32(13): 1869-85, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23714778

RESUMO

Piwi proteins and Piwi-interacting RNAs (piRNAs) repress transposition, regulate translation, and guide epigenetic programming in the germline. Here, we show that an evolutionarily conserved Tudor and KH domain-containing protein, Tdrkh (a.k.a. Tdrd2), is required for spermatogenesis and involved in piRNA biogenesis. Tdrkh partners with Miwi and Miwi2 via symmetrically dimethylated arginine residues in Miwi and Miwi2. Tdrkh is a mitochondrial protein often juxtaposed to pi-bodies and piP-bodies and is required for Tdrd1 cytoplasmic localization and Miwi2 nuclear localization. Tdrkh mutants display meiotic arrest at the zygotene stage, attenuate methylation of Line1 DNA, and upregulate Line1 RNA and protein, without inducing apoptosis. Furthermore, Tdrkh mutants have severely reduced levels of mature piRNAs but accumulate a distinct population of 1'U-containing, 2'O-methylated 31-37 nt RNAs that largely complement the missing mature piRNAs. Our results demonstrate that the primary piRNA biogenesis pathway involves 3'→5' processing of 31-37 nt intermediates and that Tdrkh promotes this final step of piRNA biogenesis but not the ping-pong cycle. These results shed light on mechanisms underlying primary piRNA biogenesis, an area in which information is conspicuously absent.


Assuntos
Arginina/metabolismo , Proteínas Argonautas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/fisiologia , Testículo/metabolismo , Animais , Apoptose , Arginina/genética , Proteínas Argonautas/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Metilação de DNA , Integrases/metabolismo , Masculino , Meiose , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microcorpos/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Interferente Pequeno/genética , Espermatogênese , Testículo/citologia
3.
Cold Spring Harb Perspect Biol ; 3(9): a002717, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21669983

RESUMO

Small noncoding RNAs have emerged as potent regulators of gene expression, especially in the germline. We review the biogenesis and regulatory function of three major small noncoding RNA pathways in the germline: The small interfering RNA (siRNA) pathway that leads to the degradation of target mRNAs, the microRNA (miRNA) pathway that mostly represses the translation of target mRNAs, and the newly discovered Piwi-interacting RNA (piRNA) pathway that appears to have diverse functions in epigenetic programming, transposon silencing, and the regulation of mRNA translation and stability. The siRNA and miRNA pathways are present in the germline as well as many somatic tissues, whereas the piRNA pathway is predominantly confined to the germline. Investigation of the three small RNA pathways has started to reveal a new dimension of gene regulation with defining roles in germline specification and development.


Assuntos
Proteínas Argonautas/genética , Regulação da Expressão Gênica/genética , Células Germinativas/química , Modelos Biológicos , Pequeno RNA não Traduzido/genética , Transdução de Sinais/genética , Animais , Feminino , Masculino
4.
Cell Stem Cell ; 8(1): 59-71, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21211782

RESUMO

The majority of research on reactive oxygen species (ROS) has focused on their cellular toxicities. Stem cells generally have been thought to maintain low levels of ROS as a protection against these processes. However, recent studies suggest that ROS can also play roles as second messengers, activating normal cellular processes. Here, we investigated ROS function in primary brain-derived neural progenitors. Somewhat surprisingly, we found that proliferative, self-renewing multipotent neural progenitors with the phenotypic characteristics of neural stem cells (NSC) maintained a high ROS status and were highly responsive to ROS stimulation. ROS-mediated enhancements in self-renewal and neurogenesis were dependent on PI3K/Akt signaling. Pharmacological or genetic manipulations that diminished cellular ROS levels also interfered with normal NSC and/or multipotent progenitor function both in vitro and in vivo. This study has identified a redox-mediated regulatory mechanism of NSC function that may have significant implications for brain injury, disease, and repair.


Assuntos
Proliferação de Células , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos , Células-Tronco Neurais/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
6.
Curr Biol ; 19(8): 640-4, 2009 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-19345100

RESUMO

Piwi proteins are essential for germline development, stem cell self-renewal, epigenetic regulation, and transposon silencing [1-7]. They bind to a complex class of small noncoding RNAs called Piwi-interacting RNAs (piRNAs) [8]. Mammalian Piwi proteins such as Mili are localized in the cytoplasm of spermatogenic cells, where they are associated with a germline-specific organelle called the nuage or its derivative, the chromatoid body, as well as with polysomes [9]. To investigate the molecular mechanisms mediated by Mili, we searched for Mili-interacting proteins. Here, we report that Mili specifically interacts with Tudor domain-containing protein 1 (Tdrd1), a germline protein that contains multiple Tudor domains [10, 11]. This RNA-independent interaction is mediated through the N-terminal domain of Mili and the N-terminal region of Tdrd1 containing the myeloid Nervy DEAF-1 (MYND) domain and the first two Tudor domains. In addition, Mili positively regulates the expression of the Tdrd1 mRNA. Furthermore, Mili and Tdrd1 mutants share similar spermatogenic defects. However, Tdrd1, unlike Mili, is not required for piRNA biogenesis. Our results suggest that Mili interacts with Tdrd1 in the nuage and chromatoid body. This interaction does not contribute to piRNA biogenesis but represents a regulatory mechanism that is critical for spermatogenesis.


Assuntos
Proteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Espermatócitos , Espermatogênese/fisiologia , Animais , Proteínas Argonautas , Proteínas de Ciclo Celular , Masculino , Camundongos , Organelas/metabolismo , Polirribossomos/metabolismo , Proteínas/genética , RNA/genética , RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Espermatócitos/citologia , Espermatócitos/metabolismo
7.
PLoS One ; 4(2): e4467, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19221599

RESUMO

Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.


Assuntos
Regulação da Expressão Gênica , Fator 3 de Transcrição de Octâmero/metabolismo , Transdução de Sinais/fisiologia , Transcrição Gênica , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dimerização , Camundongos , Modelos Moleculares , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/genética , Mutação Puntual , Estrutura Quaternária de Proteína , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
8.
Chem Biol ; 14(9): 1019-30, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17884634

RESUMO

High-throughput identification of small molecules that selectively modulate molecular, cellular, or systems-level properties of the mammalian brain is a significant challenge. Here we report the chemical genetic identification of the orphan ligand phosphoserine (P-Ser) as an enhancer of neurogenesis. P-Ser inhibits neural stem cell/progenitor proliferation and self-renewal, enhances neurogenic fate commitment, and improves neuronal survival. We further demonstrate that the effects of P-Ser are mediated by the group III metabotropic glutamate receptor 4 (mGluR4). siRNA-mediated knockdown of mGluR4 abolished the effects of P-Ser and increased neurosphere proliferation, at least in part through upregulation of mTOR pathway activity. We also found that P-Ser increases neurogenesis in human embryonic stem cell-derived neural progenitors. This work highlights the tremendous potential of developing effective small-molecule drugs for use in regenerative medicine or transplantation therapy.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Neurônios/citologia , Fosfosserina/farmacologia , Receptores de Glutamato Metabotrópico/fisiologia , Células-Tronco/citologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Ligantes , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Fosfosserina/metabolismo , Proteínas Quinases/metabolismo , Células-Tronco/efeitos dos fármacos , Serina-Treonina Quinases TOR
9.
Antimicrob Agents Chemother ; 51(7): 2403-11, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17485504

RESUMO

Anthrax lethal toxin is one of the fundamental components believed to be responsible for the virulence of Bacillus anthracis. In order to find novel compounds with anti-lethal toxin properties, we used a cell-based assay to screen a collection of approximately 500 small molecules. Nineteen compounds that blocked lethal toxin-mediated killing of RAW 264.7 macrophages were identified, and we report here on the characterization of the two most potent antitoxic compounds, amiodarone and bepridil. These drugs are used to treat cardiac arrhythmia or angina in humans at doses similar to those that provide protection against lethal toxin in vitro. Our results support a model whereby the antitoxic properties of both drugs result from their ability to block endosomal acidification, thereby blocking toxin entry. Amiodarone was tested in vivo and found to significantly increase survival of lethal toxin-challenged Fischer rats.


Assuntos
Amiodarona/farmacologia , Antraz/prevenção & controle , Toxinas Bacterianas/antagonistas & inibidores , Bepridil/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Amiodarona/química , Amiodarona/uso terapêutico , Animais , Antígenos de Bactérias , Bepridil/química , Bepridil/uso terapêutico , Células CHO , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Cricetinae , Cricetulus , AMP Cíclico/análise , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Concentração de Íons de Hidrogênio , Concentração Inibidora 50 , Macrófagos Peritoneais/microbiologia , Masculino , Camundongos , Estrutura Molecular , Ratos , Ratos Endogâmicos F344 , Fatores de Tempo
10.
Biochem Biophys Res Commun ; 348(3): 1101-6, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16904642

RESUMO

Viral protein R (Vpr), one of the human immunodeficiency virus type 1 (HIV-1) accessory proteins, contributes to multiple cytopathic effects, G2 cell cycle arrest and apoptosis. The mechanisms of Vpr have been intensely studied because it is believed that they underlie HIV-1 pathogenesis. We here report a cell-based small molecule screen on Vpr induced cell death in the context of HIV-1 infection. From the screen of 504 bioactive compounds, we identified damnacanthal (Dam), a component of noni [corrected] as an inhibitor of Vpr induced cell death. Our studies illustrate a novel efficient platform for drug discovery and development in anti-HIV therapy which should also be applicable to other viruses.


Assuntos
Antraquinonas/farmacologia , Fármacos Anti-HIV/farmacologia , Apoptose/efeitos dos fármacos , Produtos do Gene vpr/antagonistas & inibidores , Produtos do Gene vpr/fisiologia , HIV-1/efeitos dos fármacos , Apoptose/genética , Fase G2/efeitos dos fármacos , Fase G2/genética , HIV-1/genética , Células HeLa , Humanos , Fenótipo , Produtos do Gene vpr do Vírus da Imunodeficiência Humana
11.
Proc Natl Acad Sci U S A ; 100(6): 3345-50, 2003 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-12615994

RESUMO

We report a novel connection between the phosphatidylinositol (PI) metabolic pathway and the DNA replication and damage checkpoint pathway discovered from an unbiased chemical genomics screen. Substrates and products of PI kinases are important signaling molecules that affect a wide range of biological processes. The full collection of yeast deletion strains was screened to identify genes that confer altered sensitivity to the natural product wortmannin, a PI kinase inhibitor. These experiments have allowed us to explore metabolomic and proteomic implications of PI synthesis and turnover. This study also uncovers other biological processes affected by wortmannin treatment, including proteasome-mediated degradation and chromatin remodeling. Bioinformatic analyses were used to reveal the relative distances among cellular processes affected by wortmannin and protein-protein interactions in the wortmannin-sensitive proteomic subnetwork. These results illustrate the great utility of using a whole-genome approach in annotating the biological effects of small molecules and have clear implications for pharmacogenomics. Furthermore, our discovery points to a route to overcoming genome instability, a result of defective DNA damage signaling/repair and a hallmark of cancer.


Assuntos
Androstadienos/farmacologia , Genômica/métodos , Fosfatidilinositóis/metabolismo , Dano ao DNA , Replicação do DNA , Farmacorresistência Fúngica/genética , Deleção de Genes , Genes Fúngicos/efeitos dos fármacos , Teste de Complementação Genética , Humanos , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fases de Leitura Aberta , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...